ılım


Results for "ılım"

Philosophical Dictionary

İnsantoplumbilimcilik.

(Philosophical Dictionary) :
(Fr. Anthroposociologie). Toplumsal olayların nedenlerini ırkçılık açısından inceleyen ve açıklayan gerici toplumbilim öğretisi... Antropometrik toplumbilimcilik adıyle de anılır. Antropometrik toplumbilimcilik; Vacher de Lapouge, Otto Ammon, Arthur de Gobineau, Houston Stewart Chamberlain, Karl Pearson, Francis Galton gibi düşünürlerin savundukları ırkçılık temeline dayanan toplumbilimciliğin özel bir biçimidir. Saedce antropometrik (Fr. Anthropometrique) açıdan toplumsal olayları açıklamaya çalışan, bunların içinde, özellikle Otto Ammon ve Vacher de Lapouge'dur. Bu iki düşünür toplumsal olayların nedenlerini beden ve kafatası ölçülerine bağlarlar. Örneğin Alman ırkçısı Otto Ammon, bir toplumda uzunkafalıların artışıyle o toplumun ekonomik gelişmesini orantılı kılar. Uzunkafalılar çoğaldıkça zenginlik artarmış. Bedensel eşitsizlikleri toplumsal eşitsizliklerin nedeni sayar. Fransız ırkçısı Vacher de Lapouge'a göre de bedensel ölçülerle ruhsal ve ansal yetenekler arasında çok sıkı bir bağ vardır, kafa ne kadar uzun olursa, zekâ o kadar üstün olur. Irkın ayırcı niteliği de kafa biçimi ve renktir. Üstün ırk Arya ırkı (La. Homo europaeus)dır, bunlar uzunkafalıdırlar. Amerika ve İngiltere'de uzunkafalılar çok olduğu için bu ülkeler ilerlemişlerdir, Fransa'daysa son yıllarda uzunkafalılar azalmaya başladığından bu ülke gerilemiştir. Her iki kafatası ölçmeni de Darwin'den yararlanmaya çalışırlar, doğal ayıklama kuramını yozlaştırıp ondan "güçsüzler yok olmalıdırlar" sonucunu çıkarırlar. Bu düşüncelerin hiç bir bilimsel dayağanı yoktur. bkz. Irkçılık.
Philosophical Dictionary

Küçük Toplumbilim.

(Philosophical Dictionary) :
(Os. Küçük içtimaiyyat, Fr. Microsociologie, Al. Microsoziologie, İng. Microsociology, İt. Microsociologia). Soyut toplumsal tipleri inceleyen toplumbilim anlayışı... Amerika'da J. Moreno, Fransa'da George Gurvitch ve Almanya'da R. König'in ortaya attıkları bu anlayışa göre nasıl mikrofizikte atomların yapısı parçalarının birbirlerine olan oranlarıyle anlam kazanıyor ve varlaşıyorsa, mikrososyolojide de toplumun yapısı çeşitli toplumsal bağlaşma biçimleriyle anlam kazanır ve varlaşır. Bu görüşün sorduğu şudur: Toplumun en yalınç öğesi nedir? Verilen karşılığa göre, bu öğe, insan değil, toplumsal bağlaşma biçimleri (Fr. Formes de sociabilite)dir. Birey olarak insan, bu biçimleri zorunlu olarak özvarlığında taşıyor. Öyleyse toplumun incelenmesi, bu biçimlerin -Gurvitch'in deyimiyle mikrososyolojik tip'lerin- incelenmesi olmalıdır. Moreno'nun bir çeşit istatistik sonuçları olan sociometrie'siyle de ilişki kuran Gurvitch'e göre soyut toplumu anlamak için, bu soyut biçimleri çözümlemek gerekir. Küçük toplumbilim, bu soyut biçimlerde ruhbilimsel incelemelere girişir ve özellikle ruhbilimsel ortaklaşa eylemlere önem verir. Metafizik düşüncenin, sonuç olarak toplumu ruhbilimsel yapıya indirgeyen, bütün yanılgıları küçük toplumbilimde yansımaktadır. Örneğin bu anlayış, mikrososyolojik tip saydığı bir işçi örgütünü ele alır ve onun tedirginliklerini ekonomik nedenleri bir yana iterek ruhbilimsel nedenlerde arar. Bu anlayış, yeniolguculuğun ürünüdür. bkz. Olguculuk, Yeniolguculuk.
Philosophical Dictionary

Marksbilim.

(Philosophical Dictionary) :
Bütünsel bilgi... Alman düşünürü Karl Marx'ın doğasal, bilinçsel ve toplumsal bütün bilimleri birbirlerine bağımlı olarak kapsayan evrensel bilimi ve bilim yöntemi Marksbilim (Fr. Marxologie) adıyle anılır. Bu bilim fizik (doğa), felsefe (bilinç) ve ekonomi (toplum)yi bütünler. Araştırma ve açıoklama yöntemi de bütünseldir. Teoriyle pratiği birbirine bağımlı kılan bu bilimin teori yanı eytişimsel özdekçilik (Fr. Materialisme dialectique), pratik yanı tarihsel özdekçilik (Fr. Materialisme historique) adıyle anılır. Bu bilime metafizik yöntemle, yani bir yanıdan girilemez; diyalektik yöntemle, yani bütün yanlarıyla kavranarak yaklaşılabilir. Bütün yanlarını kavramak için de klasik felsefe bilgisi ve iyi öğrenilmiş Hegelcilik, klasik ekonomi bilgisi ve iyi öğrenilmiş Smith-Ricardo ekonomisi, klasik tarih bilgisi ve iyi öğrenilmiş ütopyacı toplumculuk gereklidir. Yeterijnce öğrenilmiş doğa bilimleri ve özellikle Einstein fiziği bu bilimi çok aydınlatır ve anlaşılmasını kolaylaştırır. Kavranılması bilimsel bir çabayı gerektiren bu bilim, eksik yaklaşmalar sonucu olarak yanlış yorumlara çok elverişlidir. ne var ki artık bilmek demek, Marksbilimi bilmek demektir. Doğa, insan ve toplum; bütün ilişkilire iiçinde, bu bilim kavranılmadan anlaşılamaz. bkz. Marksçılık, Eytişimsel Özdekçilik, Tarihsel Özdekçilik, Marksçı Çözümleme.
Philosophical Dictionary

Nedenbilim.

(Philosophical Dictionary) :
(Os. Mebhas-i esbab, Fr. Etiologie, Al. Aetiologie, İng. Etiology, İt. Etiologia). Belli bir türdeki olayların nedenlerini araştıran ve inceleyen bilim... Örneğin tıp, tarih ve biyoloji olaylarının nedenlerini nedenbilim araştırır. Özellikle hekimlikte nedenlerin bilinmesi hastalığın önlenmesini ya da iyileştirilmesini sağlar. bkz. Neden.
Philosophical Dictionary

Olasılıklar Hesabı Bilimi.

(Philosophical Dictionary) :
(Os. Hesab-ı ihtimalî, Fr. Calcul des probabilites). Rastlantının yasalarını araştıran bilim... Bilim, olabilirliliğin (Fr. Probabilite), eşdeyişle rastlantının (Os. Tesadüf( varlığını göz önünde tutmak zorundadır. Mekanik gerekircilik, rastlantının varlığını yadsıdığı için birçok yanılgılara düşmüştür. Rastlantı vardır ve daima göz önünde tutulmalıdır. Böyle olunca da rastlantının rastlama olasılğını hesap etmek gerekmektedir. olasılıklar hesabı bilimi, bu hesabı yapan ve rastlantının yasalarını araştıran bilimdir. Bu hesap hiç bir zaman kesin bir hesap olamaz, daima yaklaşık bir hesaptır. Belli bir yere giden bir kişi, belli bir yoldan geçmek zorundadır, belli bir çatıdran kopan bir taş parçası da yerçekimi yasasına göre belli bir yere düşmek zorundadır. Kendi iç determinasyonlarıyle belirlenen bu iki zorunluk birbirlerine rastlayıp kesişebilirler ve çatıdan kopan taş yoldan geçen o kişinin kafasına düşebilir. Acaba bu rastlantı yüzde kaç oranında olasıdır. Olasılıklar hesabı bilimi bunu bulmak için istatistiklerden yararlanır ve rastlantının tek yasasını meydana getirir. Rastlantının tek yasasına göre "olma ihtimali pek az olan olaylar hiç olmazlar". İlk bakışta yadırganabilecek olan bu yasa, gerçekte günlük yaşamımızın temeli olan bir yasadır. Örneğin insanlar bir trafik kazası ihtimali asla gerçekleşemeyecekmiş gibi sokaklarda rahatlıkla dolaşmaktadır. Çünkü istatistiklere göre nüfusu bir milyon olan bir kentte ortalam olarak trafik kazasından güne bir kişi ölmekterdir. Milyonda bir olan bu ihtimal, rastlantının tek yasasına göre insan ölçüsünde ihmal edilebilecek sayıda bir ihmaldir. Bir insanın yaşamında yüzde yüz gerçekleşecek olan ölüm ihtimalini çocukların hüç düşünmemesi, gençlerin az düşünmesi ve yaşlıların çok düşünmesi ihtimal oranlarının azlığı ve çokluğundan ötürüdür. İnsanların bu gibi yargıları, bilimsel olarak incelemedikleri halde, kendiliğinden yer etmiş ampirik yargılardır. Rastlantının tek yasasına göre olmayacakmış gibi kabul edilesi gereken olasılık oranları insan ölçüsünde, dünya ölçüsünde, evren ölçüsünde ve evrenüstü ölçüde değiştikleri gibi önemlerine göre de değişirler. Örneğin ölüm ihtimalinde göze alınmayan yüzde on oranı, sadece tatsız bir rastlantı ihtimalinde hiç olmayacakmış gibi göze alınabilir. Örneğin yeryüzündeki insanların sayısı bir buçuk milyar olduğuna göre insan ölçüsünde ihmal edilebilen milyonda bir ihtimal, dünya ölçüsünde milyonda birin milyarda biridir. Bu sayı, aynı konuda, evren ve evrenüstü ölçülerde çok daha küçülür ve büsbütün hiçleşir. Havaya atılan bir parada yazı ya da turanın gelmesi ihtimali birbirine eşittir, ama arka arkaya yapılan bin denemede de yazı gelmesi ihtimali sıfırdır. Bir denemede eşit olan ihtimallerin bin denemede sıfıra düşmesi, rastalantının tek yasasına göre tekrarlanma sayısının çoğalmasından ötürüdür. Örneğin telefonu saat 14'le 18 arasında iki saat meşgul bulunan bir aboneye telefon edildiğinde meşgul sinyali işitilince bunun gerçek meşguliyetten mi ya da her hangi bir arızadan mı olduğu tekrarla anlaşılır. Çünkü dört saatte iki saat telefonu meşgul bulunan böyle bir aboneye telefon edildiği zaman telefonu serbest bulmak iki şanstan biridir. Üç defa arka arkaya meşgul sinyalinin işitilmesi, dördüncü açışta serbest bulma ihtimalini bir bölü ikiye yükseltir. Bu aboneye her gün telefon edilmesi ortalama ayda bir defa art arda beş kez meşgul sinyalinin işitilmesini, yılda bir defadan fazla da art arda sekiz kez meşgul sinyalinin işitilmesini gerektirir. Yılda iki defa meşgul sinyali veren telefonda bir arıza olabileceği kabul edilirse art arda sekiz defa meşgul sinyalini işitmek bir arızadan şüphelenmeyi gerektirir, art arda on iki kere meşgul sinyalini işitmek şüpheyi çok kuvvetlendirir, meşgul sinyali on dakika arayla art arda yirmi kere duyulursa arıza kesindir. Olasılıklar hesabı biliminin bilimsel ya da bilimdışı birçokpratik sonuçları vardır. Örneğin olasılıklar hesabı bilimine göre bahse girmek bir bilgi işidir. İhtimali (P) olan ve kazanana verileceği vaat edilen para toplamı (A) olan bir bahiste sürülecek para nispeti âdil olarak, olayın meydana geleceğini savunan (AP) miktarında ve olayın meydana gelmeyeceğini savunanın A (I-P) miktarında para koymasını gerektirir. Daha açık bir deyişle altı ihtimalli bir zarda bir atışta altı getireceğini savunan on kuruş ve bunun olamayacağını savunan elli kuruş koymalıdır, aksi halde tutulan bahiste sürülen para âdil değildir. Bundan başka herhangi bir kumarda kazanma ihtimalleri Poisson yasasıyle tespit edilmiştir. Örneğin satışa yüz bilet çıkarılan bir piyangoda bir bilet alan kişinin kazanma ihtimali yüzde birdir. Ama bu kişi bir bilet alma deneyini aynı ihtimalli yüz piyangoda yüz kere tekrarlarsa bir defa kazanma ihtimali hiç kazanmama ihtimaline eşittir, iki defa kazanma ihtimali iki defa küçük, üç defa kazanma ihtimali iki defa kazanma ihtimalinden üç defa küçük, dört defa kazanma ihtimali üç defa kazanma ihtimalinden dört defa küçük, beş defa kazanma ihtimali dört defa kazanma ihtimalinden beş defa küçüktür ve ihtimaller bu oranda devam etmektedir. Görüldğü gibi ihtimaller matematik bir ölçü vermektedirler. Bu hesaba göre bu deneyde on defa kazanma ihtimali on milyonda birdir ve insan ölçüsünde ihmal edilebilen birihtimaldir. Eğer yüz kişi aynı deneyi tekrarlarsa Poisson yasasına göre bunlardan otuz altı kişi katıldıkları yüz çelişikte hiç kazanmayacaklar, otuz altı kişi de katıldıkları yüz çelişit bir defa kazanacaklardır. Buna karşı on sekiz kişi iki defa, altı kişi üç defa, iki kişi dört defa, bir kişi de dört defadan fazla kazanacaktır. Piyango yönetmenleri zarar etmemek için verecekleri ikramiyeyle bilet satış bedellerini Poisson yasasına göre hesaplar. bkz. Olasıcılık, Rastlantı.